Effect of Rare Earth lons on the Phase Transition of Na₂SO₄ Crystals

MASATOSHI OHTA AND MASAKAZU SAKAGUCHI

Department of Applied Chemistry, Faculty of Engineering, Niigata University, Ikarashi 2-no-cho, Niigata 950-21, Japan

Received May 15, 1989; in revised form September 5, 1990

The V \rightleftharpoons I phase transition of Na₂SO₄ crystals was investigated on a sample of pure Na₂SO₄ and on rare-earth-ion ($Ln^{3+} = La^{3+}$, Eu^{3+} , Tm^{3+})-doped Na₂SO₄ samples in various ambient gases (O₂, N₂, NH₃) with high temperature X-ray diffraction and differential thermal analysis. On heating in N₂ flow, the initiating temperature for the V \rightarrow I transition was lowered by doping with Ln^{3+} ion and the doping effect was enhanced by an increase in the ionic size ratio $r_{Ln^{3+}}/r_{Na^+}$. The low temperature form of the solid solution (LSS) Na₂SO₄ and rare earth sulfate, which was a by-product in the preparation of the Ln^{3+} -doped samples, transformed to a high temperature form (HSS) after the V \rightarrow I transition, and the initiating temperature for the LSS \rightarrow HSS transition was highest in the Eu³⁺-doped sample ($r_{Ln^{3+}}/r_{Na^+} \approx 1$). On the other hand, on cooling in N₂ flow, the HSS was stable until room temperature in the La³⁺- or Eu³⁺-doped sample ($r_{Ln^{3+}}/r_{Na^+} \ge 1$), but transformed to LSS in the Tm³⁺-doped sample ($r_{Ln^{3+}}/r_{Na^+} < 1$). The results obtained in other ambient gas flows (O₂, NH₃) were considerably affected by the sorption of ambient gas into Na₂SO₄ crystals and/or the reaction between ambient gas and Na₂SO₄ and were different from those obtained in N₂ flow. @ 1991 Academic Press, Inc.

Na₂SO₄ crystals are known to exhibit five polymorphisms (phases I, II, III, IV, and V). Many workers (1-4) have found that the phase transition is affected by the coexistence of a foreign sulfate and/or an ambient gas. Eysel et al. (1) found that divalent iondoped Na₂SO₄ was stable in phase I even at room temperature. Saito et al. (2) reported that the III \rightarrow I transition of Y-doped Na_2SO_4 depended on the amount doped of $Y_2(SO_4)_3$. In alkali metal ion- or alkaline earth ion-doped Na_2SO_4 , we (3, 4) have found that the $V \rightarrow I$ and $I \rightarrow III$ transitions depend on the crystal structure of the dopant or product (compound or solid solution) made from Na_2SO_4 but the III \rightarrow V transition is mainly affected by the ambient gas (especially water vapor).

In this study, the effect of ambient gas on

the V \rightleftharpoons I transition of Na₂SO₄ crystals for a pure Na₂SO₄ sample and rare earth ion (Ln^{3+}) -doped Na₂SO₄ samples was investigated with the high temperature X-ray diffraction (high temp-XRD) and differential thermal analysis (DTA).

Experimental

The pure and doped Na₂SO₄ samples used were prepared by evaporating to dryness aqueous solutions of Na₂SO₄ to which were added given amounts (0 to 20 mol%) of $Ln_2(SO_4)_3$ (Ln = La, Eu, Tm). This was followed by vacuum drying at 130°C for 2 hr. N₂ and O₂ were obtained by evaporation of pure liquid of N₂ and O₂, respectively, followed by a further purification by passage through a glass tube containing molecular 0022-4596/91 \$3.00

FIG. 1. The XRD pattern of Ln^{3+} (10 mol%)-doped Na₂SO₄ samples before heating; (----) phase V of Na₂SO₄, (---) $Ln_2(SO_4)_3$, (---) LSS.

sieve 5A at 0°C. NH_3 was obtained by drying a cylinder of highly pure NH_3 through a soda lime tube at 25°C.

The progress of the phase transition reaction was measured by an apparatus which enabled a simultaneous measurement of high temp-XRD and DTA (Rigaku Denki Company, Limited: Geigerflex Type 2035) as described in the previous paper (3). The temperature was varied at the rate 5° C/min.

Results

Figure 1 shows the XRD patterns of the Na_2SO_4 samples doped with 10 mol% of $Ln_2(SO_4)_3$ before heating. All samples consisted of the phase V of Na_2SO_4 and the low temperature form of solid solution (LSS) between Na_2SO_4 and rare earth sulfate. The Tm^{3+} -doped Na_2SO_4 sample alone, furthermore, contained $Tm_2(SO_4)_3$ crystals. The diffraction peak height of Na_2SO_4 crystals in the La^{3+} -doped Na_2SO_4 sample was much higher than that in the Eu^{3+} - or Tm^{3+} -doped Na_2SO_4 sample.

The V \rightarrow I transition of Na₂SO₄ was mea-

sured on the La³⁺-doped Na₂SO₄ sample in N₂ flow by means of the high temp-XRD and DTA (Fig. 2). The diffraction peak of the phase V became low, while that of the phase I grew at 188°C with a simultaneous endothermic effect on the DTA curve (A in Fig. 2). Then, the diffraction peaks of both phase I and the LSS began to decrease, while that of the high temperature form of solid solution (HSS), the crystal system of which is similar to that of phase I Na₂SO₄, began increasing at 222°C with a simultaneous endothermic effect on the DTA curve (B in Fig. 2).

Similar examinations were carried out on a pure Na₂SO₄ sample and the La³⁺-, Eu³⁺-, or Tm³⁺-doped Na₂SO₄ samples in a gas flow of N₂, O₂, or NH₃. Figure 3 shows the effects of doping with Ln^{3+} ion and ambient gas on the initiation temperature for the transitions of both the V \rightarrow I of Na₂SO₄ crystals and the LSS \rightarrow HSS. The initiating temperature for the V \rightarrow I transition was lowered with an increase in the cation size of dopant in any ambient gas, and the initiating temperature in N₂ flow was remarkably

FIG. 2. High temp-XRD and DTA traces on the La³⁺ (10 mol%)-doped Na₂SO₄ sample in N₂ flow at heating rate of 5°C/min, (A) Initiating temperature of the V \rightarrow 1 transition, (B) Initiating temperature of the LSS \rightarrow HSS transition.

FIG. 3. The V \rightarrow 1 transition (solid line) of Na₂SO₄ crystals and the LSS \rightarrow HSS transition (dotted line) of pure and Ln^{3+} (10 mol%)-doped Na₂SO₄ samples, in (\bigcirc, \bigcirc) N₂, $(\triangle, \blacktriangle)$ O₂, (\Box, \blacksquare) NH₃ (flow rate: 100 ml/min).

lower in any sample than that in O_2 flow or NH₃ flow. The initiating temperature for the LSS \rightarrow HSS transition in N₂ flow became lower in the order Eu³⁺-doped \approx Tm³⁺-doped \gg La³⁺-doped, and it was considerably higher or lower than that in O₂ or NH₃ flow, respectively, in any Ln^{3+} -doped Na₃SO₄ sample.

Figure 4 shows the effect of amount doped with Ln^{3+} on the $V \rightarrow I$ transition for the Ln^{3+} -doped Na₂SO₄ samples in N₂ flow. The transition was further promoted with an increase in the doping amount of La^{3+} or Eu^{3+} $(r_{Ln^{3+}}/r_{Na^+} \ge 1)$, but it was hardly affected by doping with Tm^{3+} $(r_{Ln^{3+}}/r_{Na^+} < 1)$.

On cooling in the case of the pure Na₂SO₄ sample, the initiating temperature for the I \rightarrow III transition became lower in the order N₂ flow > NH₃ flow > O₂ flow, contrary to the V \rightarrow I transition. However, no III \rightarrow V transition was observed in any ambient gas. On the other hand, in the case of the Ln³⁺doped Na₂SO₄ samples, the HSS produced on heating in any ambient gas was stable until room temperature in the La^{3+} - or Eu^{3+} doped Na_2SO_4 sample but it transformed to the LSS in the Tm^{3+} -doped Na_2SO_4 sample.

Discussion

The crystallographic patterns of the Ln^{3+} doped Na₂SO₄ samples before heating (Fig. 1) are thought to be closely related to the solubilities of Na₂SO₄, $Ln_2(SO_4)_3$, and LSS in water under the preparation conditions of Ln^{3+} -doped Na₂SO₄ samples.

The solubilities of $Ln_2(SO_4)_3$ and LSS are known to be much less than that of Na₂SO₄ (5). It is also known that the solubility of $Ln_2(SO_4)_3$ decreases in order $La_2(SO_4)_3 >$ $Eu_2(SO_4)_3 \gg Tm_2(SO_4)_3$ and the solubility of LSS decreases in the order $(Tm, Na)SO_4 >$ $(Eu, Na)SO_4 \ge (La, Na)SO_4 (5)$. From these facts and the results shown in Fig. 1, Na₂SO₄ would precipitate on the produced $(La, Na)SO_4$ particles in an La^{3+} -doped Na₂SO₄ sample, and it would coprecipitate with (Eu,Na)SO₄ on (Eu,Na)SO₄ particles which had precipitated partially in the Eu³⁺doped Na₂SO₄ samples. However in a Tm^{3+} -doped Na_2SO_4 sample, Na_2SO_4 and $(Tm, Na)SO_4$ would coprecipitate on $Tm_2(SO_4)_3$ particles.

FIG. 4. The effect of amount doped with Ln^{3+} on the $V \rightarrow I$ transition of Na_2SO_4 crystals on the Ln^{3+} -doped Na_2SO_4 samples in N_2 flow.

Saito *et al.* reported that the III \rightleftharpoons I transition of Na_2SO_4 proceeds with the rotation of the SO_4^{2-} tetrahedron, and this transition model was supported by the results of Mehrotra et al. (6) and Amirthalingam et al. (7). Therefore the results obtained in N₂ flow (Fig. 3) suggest that the rotation of the SO_4^{2-} tetrahedron in Na₂SO₄ crystals becomes easy owing to the Na vacancy formed in Na₂SO₄ crystals due to the diffusion of Na⁺ ions into the LSS, resulting in promotion of the $V \rightarrow I$ transition. The diffusion of Na⁺ ions into the LSS in the La³⁺-doped Na₂SO₄ sample $(r_{Ln^{3+}}/r_{Na^+} > 1)$ would most easily occur among the samples used here (Figs. 3 and 4), resulting in promotion of the transition from LSS to HSS, which corresponds to the solid solution between the phase I of Na_2SO_4 and a small amount of foreign cation sulfate as pointed out by Eysel et al. (8).

We have found that Na₂SO₄ crystals rapidly sorb O_2 gas (9). It is well known that the chemical affinity between rare earth and oxygen is strong. In O_2 flow, the SO_4^{2-} tetrahedron of Na₂SO₄ crystals is thought to become considerably difficult to rotate due to the sorption of O₂ gas into Na₂SO₄ crystals, resulting in inhibition of the $V \rightarrow I$ transition in all Na_2SO_4 samples. In the Eu³⁺- and Tm³⁺-doped Na₂SO₄ samples $(r_{Ln^{3+}}/r_{Na^{+}} \leq$ 1), the diffusion of Na⁺ into LSS and the diffusion of Ln³⁺ into Na₂SO₄ occur simultaneously and latter is promoted by oxygen sorbed into Na_2SO_4 due to the strong chemical affinity between rare earth and oxygen, resulting in the promotion of the LSS \rightarrow HSS transition. In the La³⁺-doped Na₂SO₄ sample $(r_{Ln^{3+}}/r_{Na^{+}} > 1)$, the diffusion of Ln^{3+} into Na₂SO₄ cannot be expected, in which case the LSS \rightarrow HSS transition could not be promoted even if in O₂ flow. In NH₃ flow, we think that the NH₃ complex formed on the crystal surface of Na₂SO₄ suppressed not only the rotation of the SO_4^{2-} tetrahedron of Na₂SO₄ crystals but also the diffusion of Na⁺ ion and/or Ln³⁺ ion, resulting in a rise in the initiation temperature of both the V \rightarrow 1 transition and the LSS \rightarrow HSS transition. It could be thought that the I \rightarrow III transition in pure Na₂SO₄ sample on cooling was also suppressed by the existences of oxygen sorbing into Na₂SO₄ crystals and of the NH₃ complex on the crystal surface of Na₂SO₄ as well as the V \rightarrow I transition on heating.

Conclusion

The phase transition reaction of Na₂SO₄ crystals was promoted by the enhanced rotation of the SO₄²⁻ tetrahedron caused by Na vacancy in Na₂SO₄ crystals. However, the promotive effect of Na vacancies was suppressed by not only the Ln³⁺ ion diffusing into Na₂SO₄ crystals and but also by O₂ sorbing into Na₂SO₄ crystals and the NH₃ complex on the crystal surface of Na₂SO₄.

Acknowledgments

The authors are grateful to Mr. Kazuyoshi Uematsu and Mr. Yasuyuki Takashima for their experimental assistance.

References

- W. Eysel, H. H. HOEFER, K. L. KEESTER, AND TH. HAHN, Acta Crystallogr. Sect. B 41, 5 (1985).
- 2. Y. SAITO, K. KOBAYASHI, AND T. MARUYAMA, THERMOCHIM. Acta 53, 289 (1982).
- 3. M. SAKAGUCHI, M. OHTA, AND S. MIYAZAKI, J. Electrochem. Soc. 131, 1942 (1984).
- 4. M. OHTA AND M. SAKAGUCHI, Nippon Kagaku Kaishi 1989, 928.
- 5. T. MOELLER, "The Chemistry of the Lanthanides," Ch. 3, Reinhold, New York, (1963).
- B. N. MEHROTRA, TH. HAHN, H. ARNOLD, AND W. EYSEL, Acta Crystallogr. Sect. A 31, S79 (1975).
- 7. V. AMIRTHALINGAM, M. D. KARKHANAVALA, AND U. R. K. RAO, Acta Crystallogr. Sect. A 33, 522 (1977).
- H. H. HOEFER AND W. EYSEL, J. Solid State Chem. 36, 365 (1981).
- 9. M. SAKAGUCHI, M. OHTA, AND Y. TAKASHIMA, *Rare Earths*, **2**, 24 (1983).