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Effect of Rare Earth Ions on the Phase Transition of Na,SO, Crystals 
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The V ti I phase transition of NaSO, crystals was investigated on a sample of pure Na?SO, and on 
rare-earth-ion (Ln” = La’+. E&+ , Tm” )-doped Na,S04 samples in various ambient gases (O!, Nz, 
NH,) with high temperature X-ray diffraction and differential thermal analysis. On heating in N? Row, 
the initiating temperature for the V + I transition was lowered by doping with Ln’+ ion and the doping 
effect was enhanced by an increase in the ionic size ratio rL,: + /I.~;~ +. The low temperature form of the 
solid solution (LSS) Na$O, and rare earth sulfate, which was a by-product in the preparation of the 
Lnr’-doped samples, transformed to a high temperature form (HSS) after the V + I transition, and the 
initiating temperature for the LSS 4 HSS transition was highest in the E&+-doped sample 
(rLn3+lrNa+ = 1). On the other hand, on cooling in N2 flow, the HSS was stable until room temperature 
in the La3+- or Eu3+-doped sample (rLa3+IrN a+ Z l), but transformed to LSS in the Tm3+-doped sample 
(rLn’+lrNa+ < 1). The results obtained in other ambient gas Rows (02, NH,) were considerably affected 
by the sorption of ambient gas into Na,SO, crystals and/or the reaction between ambient gas and 
Na2S0, and were different from those obtained in N, flow. Q 1991 Academic P,U, IK 

Na$O, crystals are known to exhibit five 
polymorphisms (phases 1, II, III, IV, and 
V). Many workers ( 1-4) have found that 
the phase transition is affected by the coex- 
istence of a foreign sulfate and/or an ambient 
gas. Eysel et al. ( 1) found that divalent ion- 
doped Na,SO, was stable in phase 1 even at 
room temperature. Saito et al. (2) reported 
that the III --, I transition of Y-doped 
Na,S04 depended on the amount doped of 
Y2(S04)3. In alkali metal ion- or alkaline 
earth ion-doped Na+SO,, we (3, 4) have 
found that the V -+ I and I+ 111 transitions 
depend on the crystal structure of the dop- 
ant or product (compound or solid solution) 
made from Na,SO, but the III + V transi- 
tion is mainly affected by the ambient gas 
(especially water vapor). 

In this study, the effect of ambient gas on 

the V $ I transition of Na,SO, crystals for 
a pure Na$O, sample and rare earth ion 
( Ln3+ )-doped Na,SO, samples was investi- 
gated with the high temperature X-ray dif- 
fraction (high temp-XRD) and differential 
thermal analysis (DTA). 

Experimental 

The pure and doped Na$O, samples used 
were prepared by evaporating to dryness 
aqueous solutions of Na2S04 to which were 
added given amounts (0 to 20 mol%) of 
Ln2(S04)3 (Ln = La, ELI, Tm). This was 
followed by vacuum drying at 130°C for 2 
hr. Nz and 0, were obtained by evaporation 
of pure liquid of N, and 02, respectively, 
followed by a further purification by passage 
through a glass tube containing molecular 
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FIG. I. The XRD pattern of Ln” (10 mol%)-doped 
Na?S04 samples before heating: (-) phase V of 
Na$O,, (---) I?+(SO,)~, (G-1 LSS. 

sieve 5A at 0°C. NH, was obtained by drying 
a cylinder of highly pure NH, through a soda 
lime tube at 25°C. 

The progress of the phase transition reac- 
tion was measured by an apparatus which 
enabled a simultaneous measurement of 
high temp-XRD and DTA (Rigaku Denki 
Company, Limited: Geigerflex Type 2035) 
as described in the previous paper (3). The 
temperature was varied at the rate YC/min. 

Results 

Figure I shows the XRD patterns of the 
Na,SO, samples doped with 10 mol% of 
&(SO,), before heating. All samples con- 
sisted of the phase V of Na,S04 and the low 
temperature form of solid solution (LSS) be- 
tween Na,SO, and rare earth sulfate. The 
Tm3+-doped Na,SO, sample alone, further- 
more, contained Tm,(SO,), crystals. The 
diffraction peak height of Na,SO, crystals 
in the La3’-doped Na,SO, sample was much 
higher than that in the Eu3+- or Tm3+-doped 
Na,SO, sample. 

The V -+ I transition of Na$O, was mea- 

sured on the La’+-doped Na,SO, sample in 
N, flow by means of the high temp-XRD and 
DTA (Fig. 2). The diffraction peak of the 
phase V became low, while that of the phase 
I grew at 188°C with a simultaneous endo- 
thermic effect on the DTA curve (A in Fig. 
2). Then, the diffraction peaks of both phase 
1 and the LSS began to decrease, while that 
of the high temperature form of solid solu- 
tion (HSS), the crystal system of which is 
similar to that of phase I Na,SO,. began 
increasing at 222°C with a simultaneous en- 
dothermic effect on the DTA curve (B in 
Fig. 2). 

Similar examinations were carried out on 
a pure Na2S04 sample and the La3+-, Eui+-, 
or Tm3+-doped Na,SO, samples in a gas 
flow of N2, 02, or NH,. Figure 3 shows the 
effects of doping with Lrr’+ ion and ambient 
gas on the initiation temperature for the 
transitions of both the V -+ 1 of NaJO, 
crystals and the LSS + HSS. The initiating 
temperature for the V + I transition was 
lowered with an increase in the cation size of 
dopant in any ambient gas, and the initiating 
temperature in N, flow was remarkably 
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FIG. 2. High temp-XRD and DTA traces on the Lai+ 
(10 mol%)-doped Na,SO, sample in N? flow at heating 
rate of YCimin, (A) Initiating temperature of the V - 
I transition, (B) Initiating temperature of the LSS - 
HSS transition. 
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FIG. 3. The V + I transition (solid line) of Na2S01 
crystals and the LSS + HSS transition (dotted line) of 
pure and L&+ (10 mol%)-doped NalS04 samples. in 
(0,O) N:. @,A) O!, (U,W) NH? (flow rate: 100 ml/ 
min). 

lower in any sample than that in O2 flow or 
NH, flow. The initiating temperature for the 
LSS -+ HSS transition in Nz flow became 
lower in the order Eu3+-doped = Tm3’- 
doped + La3+-doped, and it was consider- 
ably higher or lower than that in O2 or NH, 
flow, respectively, in any Ln”-doped 
Na,SO, sample. 

Figure 4 shows the effect of amount doped 
with Ln3+ on the V + I transition for the 
Ln3 + -doped Na,S04 samples in N2 flow. The 
transition was further promoted with an in- 
crease in the doping amount of La3+ or Eu3+ 
(rLn3+lrNa+ 2 I), but it was hardly affected 
by doping with Tm3+ (P~.,,~+/Y~~+ < I). 

On cooling in the case of the pure Na$O, 
sample, the initiating temperature for the 1 
+ III transition became lower in the order 
N2 flow > NH, flow > O2 flow, contrary to 
the V + I transition. However, no III -+ V 
transition was observed in any ambient gas. 
On the other hand, in the case of the Ln3+- 
doped Na,SO, samples, the HSS produced 
on heating in any ambient gas was stable 

until room temperature in theLa3+- or Eu’+- 
doped Na,SO, sample but it transformed to 
the LSS in the Tm’+-doped Na,SO, sample. 

Discussion 

The crystallographic patterns of the Ld’- 
doped Na,SO, samples before heating (Fig. 
I) are thought to be closely related to the 
solubilities of Na,SO,, Ln,(SO,), , and LSS 
in water under the preparation conditions of 
Ln’+-doped Na$O, samples. 

The solubilities of Ln2(S0,), and LSS are 
known to be much less than that of Na,SO, 
(5). It is also known that the solubility of 
Ln,(SO,), decreases in order La,(SO,), > 
Eu,(SO,), 9 TmZ(SO,), and the solubility of 
LSS decreases in the order (Tm,Na)SO, > 
(Eu,Na)SO, % (La,Na)SO, (5). From these 
facts and the results shown in Fig. I, Na,SO, 
would precipitate on the produced 
(La,Na)SO, particles in an La3+-doped 
Na2S04 sample, and it would coprecipitate 
with (Eu,Na)SO, on (Eu,Na)SO, particles 
which had precipitated partially in the Eu3+- 
doped Na$O, samples. However in a 
Tm3+-doped Na,SO, sample, Na,SO, and 
(Tm,Na)SO, would coprecipitate on 
Tm2(S04)3 particles. 

AIXOWI~ doped with Ln2(SQ& bWl%) 

FIG. 4. The effect of amount doped with Ln3+ on the 
V - I transition of Na2S04 crystals on the Ln3+-doped 
NazSOl samples in N1 flow. 



Saito et al. reported that the III $ I transi- 
tion of Na,SO, proceeds with the rotation of 
the SO:- tetrahedron, and this transition 
model was supported by the results of Meh- 
rotra et al. (6) and Amirthalingam et al. ( 7). 
Therefore the results obtained in N2 flow 
(Fig. 3) suggest that the rotation of the 
SOi- tetrahedron in Na,SO, crystals be- 
comes easy owing to the Na vacancy formed 
in Na,SO, crystals due to the diffu- 
sion of Na+ ions into the LSS, resulting 
in promotion of the V + I transition. The 
diffusion of Na+ ions into the LSS in the 
La3+-doped Na,SO, sample (T~~~+/Y~~+ > I) 
would most easily occur among the samples 
used here (Figs. 3 and 4), resulting in promo- 
tion of the transition from LSS to HSS, 
which corresponds to the solid solution be- 
tween the phase I of Na,SO, and a small 
amount of foreign cation sulfate as pointed 
out by Eysel et al. (8). 

We have found that Na,SO, crystals rap- 
idly sorb O2 gas (9). It is well known that 
the chemical affinity between rare earth and 
oxygen is strong. In 0, flow, the SOi- tetra- 
hedron of Na,SO, crystals is thought to be- 
come considerably difficult to rotate due to 
the sorption of 0, gas into Na$O, crystals, 
resulting in inhibition of the V + 1 transition 
in all Na,SO, samples. In the Eu3+- and 
Tm3+-doped Na,SO, samples ( Y~,~~+/Y~~+ Z 
I), the diffusion of Na+ into LSS and the 
diffusion of Ln3+ into Na,SO,occur simulta- 
neously and latter is promoted by oxygen 
sorbed into Na,SO, due to the strong chemi- 
cal affinity between rare earth and oxygen, 
resulting in the promotion of the LSS + 
HSS transition. In the La3+-doped Na$O, 
sample ( Y~,?~+/Y~~+ > l), the diffusion of Ln3+ 
into Na,SO, cannot be expected, in which 
case the LSS + HSS transition could not 
be promoted even if in O2 flow. In NH, flow, 
we think that the NH, complex formed on 
the crystal surface of Na$O, suppressed 
not only the rotation of the SO:- tetrahe- 
dron of NaSO, crystals but also the diffu- 
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sion of Na+ ion and/or Ln3+ ion, resulting 
in a rise in the initiation temperature of both 
the V + 1 transition and the LSS * HSS 
transition. It could be thought that the I + 
III transition in pure Na,SO, sample on 
cooling was also suppressed by the exis- 
tences of oxygen sorbing into Na$O, crys- 
tals and of the NH, complex on the crystal 
surface of NaZS04 as well as the V -+ 1 
transition on heating. 

Conclusion 

The phase transition reaction of NaSO, 
crystals was promoted by the enhanced 
rotation of the SOi- tetrahedron caused 
by Na vacancy in Na,SO, crystals. How- 
ever, the promotive effect of Na vacancies 
was suppressed by not only the Ln3+ ion 
diffusing into Na,SO, crystals and but also 
by O2 sorbing into Na,SO, crystals and the 
NH, complex on the crystal surface of 
Na$O, . 

The authors are grateful to Mr. Kazuyoshi Uematsu 

and Mr. Yasuyuki Takashima for their experimental 

assistance. 
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